692. Thermochemistry of Organoboron Compounds. Part VIII.* The Heats of Reaction of Diborane with Ethylene, Isobutene, Butadiene, and Isoprene.

By A. E. POPE and H. A. SKINNER.

The heats of reaction of diborane with ethylene, isobutene, butadiene, and isoprene have been measured at 25° in 1,2-dimethoxyethane as solvent. From the results, values were derived for the heats of formation (ΔH_f°) of liquid triethylboron, and tri-isobutylboron, $-45\cdot4$ and $-81\cdot9 \pm 1\cdot2$ kcal./ mole, respectively.

The available heats of formation of alkylborons are discussed in terms of the empirical bond-energy and bond-interaction scheme recently suggested by Allen. The scheme is applied to calculate the heats of possible reactions occurring on hydroboration of butadiene (and isoprene): the experimental thermochemistry of these reactions is consistent with the view that the initial products are low polymers of $-CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot BH-$ or similar units.

BENNETT and SKINNER¹ recently obtained values for the heats of formation of trihexylboron, triheptylboron, and trioctylboron from measurements of the heats of addition of diborane to hex-1-ene, hept-1-ene, and oct-1-ene. These terminal olefins react rapidly at room temperature in ether solvents,^{2,3} viz.:

$$SR \cdot CH = CH_2 + B_2H_6 \longrightarrow 2B(CH_2 \cdot CH_2R)_3$$

and proved to be suited to direct calorimetric study. The present paper reports an extension of these calorimetric studies to the addition of diborane to ethylene, isobutene, butadiene, and isoprene.

EXPERIMENTAL

Preparation of Compounds.—Diborane was prepared as described by Brown and Rao² and purified by low-temperature distillation in an all-glass system. Ethylene was supplied by the British Oxygen Company, Ltd., and was 98.3% pure; the major impurities were nitrogen $(1\cdot2\%)$ and carbon dioxide $(0\cdot3\%)$. Isobutene was a high-purity sample from the Phillips Petroleum Co., supplied to us by Dr. P. H. Plesch. Butadiene was supplied by Imperial Chemical Industries Limited and stated to be $99\cdot3\%$ pure, the impurities being but-1-ene $(0\cdot4\%)$ and but-2-ene $(0\cdot3\%)$. Isoprene was a sample of $99\cdot8\%$ purity, presented by the Dunlop Rubber Co.

"Diglyme" (diethylene glycol dimethyl ether) and "monoglyme" (1,2-dimethoxyethane) were supplied by the Ansul Chemical Co. and purified by fractional distillation over calcium hydride; they were redistilled from lithium aluminium hydride and stored under dry nitrogen.

Calorimeter.—The calorimeter, of the isothermal-jacket type, was described in detail in Part VI. The reaction vessel was the same as used in Part VII. The calorimeter was calibrated electrically by the substitution method.

Procedure.—The general procedure was to mix known amounts of olefin and diborane in monoglyme in the glass reaction vessel inside the calorimeter, and to measure the ensuing change in temperature of the system with time.

Units and Auxiliary Quantities.—Heat quantities are given in thermochemical calories, defined by 1 cal. $\equiv 4.1840$ abs. joule.

The following values were accepted for the molar volumes of the pure gases at N.T.P.; diborane = $22 \cdot 15$ l.; ethylene = $22 \cdot 26$ l.; isobutene = $21 \cdot 60$ l.; and butadiene = $21 \cdot 50$ l.

- * Part VII, J., 1962, 2150.
- ¹ Bennett and Skinner, J., 1961, 2472.
- ² Brown and Subba Rao, J. Org. Chem., 1957, 22, 1136; J. Amer. Chem. Soc., 1959, 81, 6428.
- ³ Brown, Tetrahedron, 1961, **12**, 117.

The diborane samples were assumed to have an average purity of 99.5% (as determined by hydrolysis of random samples). The following standard heats of formation were accepted:

ΔH_{f}° (B ₂ H ₆ ,g.)	$=$ 6·73 \pm 0·52 kcal./mole; 4
$\Delta H_{f}^{\circ} (C_{2}H_{4},g.)$	= 12.50 \pm 0.10 kcal./mole; ⁵
ΔH_{f}° (Me ₂ C=CH ₂ ,g.)	= -4.04 ± 0.26 kcal./mole; ⁵
$\Delta H_{\rm f}^{\circ}$ (CH ₂ =CH=CH=CH ₂ ,g.)	$=$ 26·33 \pm 0·30 kcal./mole; ⁵
ΔH_{f}° (CH ₂ =CMe=CH=CH ₂ ,g.)	= $18 \cdot 10 \pm 0.30$ kcal./mole. ⁵

RESULTS

Diborane and Ethylene.--Two sets of experiments were made on the diborane-ethylene reaction. In the first set, a measured volume of ethylene was passed into a solution of diborane in monoglyme, contained in the reaction vessel in the calorimeter. The diborane was present in excess (m > 0) with respect to the equation:

$$(m + 1)B_2H_6$$
 (monoglyme) + $6C_2H_4$ (g.) $\longrightarrow [m(B_2H_6) + 2B(C_2H_5)_3]$ (monoglyme). (1)

The measured heats of reaction, ΔH_1 , calculated per 6 moles of ethylene consumed, were found to diminish as the value of m approached zero. In the presence of an excess of diborane however, eqn. (1) is inaccurate,⁶ the products of reaction being a mixture of BEt₃, BHEt₂, and BH₂Et. Despite this, we have accepted the value of ΔH_1 obtained by extrapolation of the observed heats of reaction to m = 0 as a valid measure: the results are summarised in the Table.

Expt. no.	1	2	3	4	5	
C ₃ H ₄ used (mmoles)	11.73	11.69	17.05	15.48	18.59	
Value of m	0.70	0.70	0.33	0.33	0.50	
ΔH_1 , obs. (kcal./6C ₂ H ₄)	-169.8	-169.8	-165.0	-164.8	-164.6	
Extrapolation to $m = 0$ gives $\Delta H_1 = -164.3 \pm 1$ kcal./mole.						

The heat of solution of diborane in monoglyme was measured by Bennett,⁷ who obtained $\Delta H_{\rm soln} = -6.4 \pm 0.2$ kcal./mole. Hence, for the reaction involving B_2H_6 and C_2H_4 as gases, i.e.,

$$B_{2}H_{6}(g.) + 6C_{2}H_{4}(g.) + \text{monoglyme} \longrightarrow [2B(C_{2}H_{5})_{3}], \text{ soln., monoglyme,}$$
(2)

the heat of reaction, $\Delta H_2 = -170.7 \pm 1.2$ kcal./mole.

In view of the unsatisfactory feature involved in extrapolating the value ΔH_1 , a second set of experiments was made by a different procedure. In these, a measured volume of diborane was passed into a saturated solution of ethylene in monoglyme, the solvent being resaturated with ethylene at the end of the reaction period: the observed heat of reaction, ΔH_{a} , now refers to the system:

 $[xC_2H_4]$, sat. soln. monoglyme + $B_2H_6(g)$ + $6C_2H_4(g)$ \longrightarrow

 $[xC_2H_4 + 2B(C_2H_5)_3]$, soln. monoglyme (3)

and, since the heat of solution of C_2H_4 in monoglyme should not differ significantly from that in monoglyme containing a small amount of dissolved triethylboron, the observed reaction heat should be identical with ΔH_2 .

The measured heats are summarised as annexed. The mean value is in fair agreement with ΔH_2 obtained in the first set of experiments. We accept $\Delta H_3 = -170.5 \pm 2$ kcal./mole as representative of the results from both sets of experiments.

2 Expt. no. 1 3 6 4 5 2.2382.4762.4692.5002.463B₂H₆ used (mmole) 2.516 ΔH_3 , obs. (kcal./mole of B₂H₆) ... -173.3 -171.5-168.1-170.5-169.5-168.9Mean value: $\Delta H_3 = -170.3$ kcal./mole. $2 \times$ Standard deviation of mean = ± 1.6 kcal./mole.

⁴ Johnson, Prosen, and Pergiel, J. Res. Nat. Bur. Standards, 1958, **61**, 247. ⁵ A.P.I. Tables, Project 44, Carnegie Institute of Technology, Pittsburgh, 1953 onwards.

⁶ Brown, Tsukamoto, and Bigley, J. Amer. Chem. Soc., 1960, 82, 4703.

⁷ Bennett, Ph.D. Thesis, Manchester University, 1961.

For the idealised reaction:

$$B_2H_6(g.) + 6C_2H_4(g.) \longrightarrow 2B(C_2H_5)_3(liq.),$$
 (4)

the heat of reaction, ΔH_4 , is related to ΔH_3 by

$$\Delta H_4 = \Delta H_3 - 2\Delta H_{\rm soln.},\tag{5}$$

where $\Delta H_{\rm soln.}$ is the heat of solution of liquid triethylboron in monoglyme. The latter was not measured, but was estimated on the basis of the known heat of solution of trihexylboron¹ in diglyme, and of tri-isobutylboron in monoglyme (see below), $\Delta H_{\rm soln.} \sim 1.0 \pm 0.3$ kcal./mole. Hence, $\Delta H_4 = -172.5 \pm 2.1$ kcal./mole.

The heat of formation of $B(C_2H_5)_3$, liq., may be derived from ΔH_4 through the thermochemical equation

$$\Delta H_{\rm f}^{\,\circ}(\rm BEt_{3}, liq.) = \frac{1}{2}\Delta H_{4} + \frac{1}{2}\Delta H_{\rm f}^{\,\circ}(\rm B_{2}H_{6}, g.) + 3\Delta H_{\rm f}^{\,\circ}(\rm C_{2}H_{4}, g.), \tag{6}$$

whence $\Delta H_{\rm f}^{\circ}({\rm BEt}_3,{\rm liq.}) = -45.4 \pm 1.2$ kcal./mole. The result compares reasonably well with the value -47.2 ± 3.7 kcal./mole obtained by Johnson, Kilday, and Prosen⁸ from measurements of the heat of combustion using a bomb-calorimeter.

Diborane and Isobutene.—This reaction was studied by adding a known volume of diborane to a solution of an excess of isobutene in monoglyme, *viz*.:

 $(6 + x)C_4H_8$, monoglyme solution + $B_2H_6(g)$.

 $[2B(C_4H_9)_3 + xC_4H_8]$, monoglyme solution. (7)

The measured heats of reaction, ΔH_7 , per mole of B_2H_6 consumed, are annexed.

Expt. no.	1	2	3	4	5	6
C_4H_8 added (mmole)	18.63	$22 \cdot 41$	21.74	22.58	$24 \cdot 87$	$22 \cdot 92$
B_2H_6 used (mmole)	$2 \cdot 440$	2.878	2.846	2.797	2.815	2.748
Value of x	1.64	1.78	1.63	2.08	2.84	2.33
ΔH_7 (kcal./mole of B ₂ H ₆)	-117.4	-115.3	-115.8	-117.0	$-115 \cdot 2$	-115.6

Mean value, $\Delta H_7 = -116.1$ kcal./mole.

 $2 \times$ Standard deviation of mean = ± 0.8 kcal./mole.

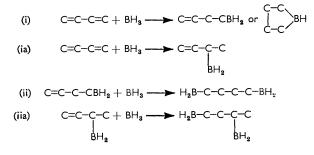
Measurements were also made of the heat of solution of isobutene vapour in monoglyme, yielding $\Delta H_{\rm soln.} = -4.55 \pm 0.2$ kcal./mole, and of the solution heat of liquid tri-isobutylboron, $\Delta H_{\rm soln.} = 1.40 \pm 0.1$ kcal./mole; the latter was obtained by using the solution heat calorimeter previously described by Bennett and Skinner.¹ Hence, for the idealised reaction

$$6C_4H_8(g.) + B_2H_8(g.) \longrightarrow 2B(C_4H_9)_3, liq., \tag{8}$$

the reaction heat, $\Delta H_8 = -146.2 \pm 1.5$ kcal./mole from which we derive $\Delta H_f^{\circ}[B(C_4H_9)_3, liq.] = -81.9 \pm 1.2$ kcal./mole.

According to Brown,³ the hydroboration of 2-methylbut-1-ene leads almost exclusively (99%) to attachment of boron to the terminal =CH₂ group; analogy suggests that the hydroboration of isobutene yields tri-isobutylboron, with little (if any) formation of t-butylboron.

Diborane and Butadiene.—The addition of diborane to dienes has been investigated recently by Zwiefel, Nagase, and Brown,⁹ who concluded that a series of competing addition reactions occur with the formation of complex polymeric organoboranes. The diene-diborane reactions, because of their complexity, are less promising from the thermochemical viewpoint than the olefin-diborane reactions, and our studies of them have been no more than exploratory.

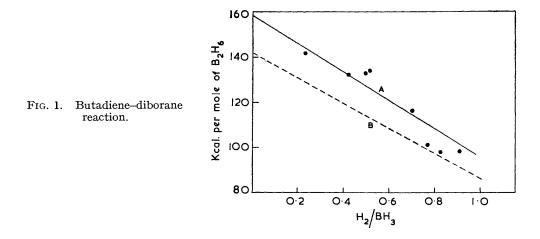

The calorimeter was set up with monoglyme in the reaction vessel and allowed to reach a steady thermal state. A measured volume of gaseous butadiene was then dissolved in the solvent, followed by a measured volume of diborane, and the calorimeter temperature was

⁸ Johnson, Kilday, and Prosen, J. Res. Nat. Bur. Standards, 1961, 65, A, 215.

⁹ Zweifel, Nagase, and Brown, J. Amer. Chem. Soc., 1962, 84, 183.

recorded throughout. At the end of the experiment, the products were hydrolysed with water, and the volume of hydrogen evolved was measured.

The reaction is considered to involve the steps:


followed by the addition of each of these products to butadiene, to form polymeric organoboranes. The latter may still contain -BH linkages, which are hydrolysed by water, evolving hydrogen.

The calorimetric results are summarised in Table 1. It appears that the heat of reaction per mole of B_2H_6 added increases as the ratio H_2/BH_3 diminishes (Fig. 1), but it is not simply

TABLE 1.

Hydroboration of butadiene.

		II y UI O L	Joint of Du	autorio.		
Expt.	Diene (mmoles)	BH ₃ (mmoles)	H ₂ (mmoles)	$\frac{\text{Diene}}{\text{BH}_3}$	$\frac{H_2}{BH_3}$	$\begin{array}{c} -\Delta H \\ (\text{kcal./mole} \\ \text{of } B_2H_6) \end{array}$
î	6.09	6.19	5.61	0.98	0.91	98.1
$\overline{2}$	4.87	4.92	4.09	0.99	0.83	97.3
3	6.92	6.55	5.03	1.06	0.77	100.6
4	6.31	5.73		1.10		115.0
5	6.34	5.68	4 ·0	1.12	0.70	115.7
6	12.06	5.76	2.44	2.09	0.42	$132 \cdot 1$
7	11.83	5.64	1.31	$2 \cdot 10$	0.23	141.5
8	16.83	5.81	2.88	2.90	0.20	132.7
9	16.94	5.83	2.88	2.91	0.49	133.5

related to the ratio diene/BH₃. By extrapolation of the results plotted in Fig. 1, the value $\Delta H \sim -160 \pm 10$ kcal./mole is indicated when the ratio H₂/BH₃ becomes zero, *i.e.*, when reaction of B-H with diene proceeds to completion.

It is clear that the butadiene-diborane reaction does not stop at the first stage (formation

of C=C-C-CBH₂ and in part, C=C-C-C) even when the diene/BH₃ ratio is only 1.0, since in this $\overset{|}{_{BH_2}}$

event the H_2/BH_3 ratio should be 2.0, and was invariably found to be <1.0. The initial product must therefore either re-arrange by cyclisation, or by forming $-CH_2\cdot CH_2\cdot CH_2\cdot CH_2\cdot BH-$ and becoming part of a chain polymer

On increasing the ratio diene/BH₃ from 1.0 to 2.0 and up to 3.0, conditions should favour more complete reaction of the B-H links.

This is borne out in Table 1, which shows that the ratio H_2/BH_3 falls to 0.5 or less as diene/BH₃ increases from 1.0 to 2.0. However, the H_2/BH_3 ratio did not continue to fall as the diene/BH₃ ratio was increased from $2.0 \rightarrow 3.0$. It seems that some B-H linkages become entangled in the polymer structures sufficiently to prevent, or seriously retard, their further reaction with the excess of butadiene.

Diborane and Isoprene.—These studies followed the pattern described for the butadienediborane reaction, except that the isoprene was dissolved in the monoglyme before the reaction was started and the temperature changes recorded.

The results are summarised in Table 2.

TABLE 2.

Hydroboration of isoprene.

	Diene	BH_3	H_2	Diene	H ₂	$-\Delta H$ (kcal./mole
Expt.	(mmoles)	(mmoles)	(mmoles)	BH_3	BH_{3}	of B_2H_6
1	$6 \cdot 5$	6.72	6.50	0.97	0.97	80.4
2	$6 \cdot 3$	6.21	4.73	1.01	0.76	87.8
3	$6 \cdot 3$	6.12	4.38	1.02	0.71	$92 \cdot 1$
4	11.0	5.69	2.67	1.93	0.47	$102 \cdot 1$
5	11.0	5.67	2.11	1.94	0.37	108.0
6	13.2	6.49	3.29	2.04	0.51	102.7
7	12.0	5.59	2.46	2.12	0.44	95.7
8	17.5	5.68	2.94	3.08	0.52	99.6
9	20.2	6.47	3.51	3.12	0.54	97.2

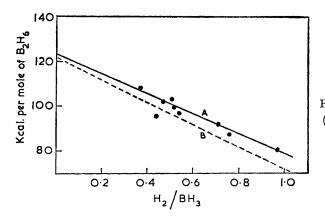


FIG. 2. Isoprene-diborane reaction. (A) Experimental. (B) Calculated.

Extrapolation of these values, plotted in Fig. 2, gives $\Delta H \sim -126 \pm 5$ kcal./mole of B₂H₆ for the complete reaction, *i.e.*, when the ratio H₂/BH₃ becomes zero. As in the hydroboration of butadiene, increasing the diene/BH₃ ratio from 2 to 3 does not seem to increase the degree of hydroboration of the diene.

DISCUSSION

Table 3 lists the heats of formation now available for alkylborons, which have been obtained either from heats of combustion or from heats of hydroboration.

Compound	Method	Ref.	$\Delta H_{\rm f}^{\rm o}$ (liq.) (kcal./mole)	$\Delta H_{\rm v}^{\circ}$ (kcal./mole)	ΔH_{f}° (gas) (kcal./mole)
*				· · ·	
BMe ₃	С	8	-34.8 ± 5.4	4.8 ± 0.2	-30.0 ± 5.5
BEt.	С	8	-47.2 ± 3.7	8.8 ± 0.2	-38.4 ± 3.8
J	HB	*	$-45\cdot4$ \pm $1\cdot2$	_	-36.6 ± 1.4
BBu ⁿ ,	С	8	$-83\cdot2\pm2\cdot5$	14.8 ± 0.5	-68.4 ± 3
BBu ⁱ ,	HB	*	-81.9 ± 1.2	13.8 ± 0.5	-68.1 ± 1.7
BBu ^s ,	С	10	-75.0 ± 6	14.3 ± 0.5	-60.7 ± 6.5
$B(C_{6}H_{13})_{3}$	HB	1	$-117\cdot2\pm2\cdot3$	$21\cdot2~\pm~0\cdot5$	-96.0 ± 2.8
$B(C_7H_{15})_3$	HB	1	$-135{\cdot}0\pm1{\cdot}8$	$24{\cdot}4~\pm~0{\cdot}5$	-110.6 ± 2.3
$B(C_8H_{17})_3$	HB	1	$-153\cdot3\pm1\cdot8$	27.6 ± 0.5	-125.7 ± 2.3
$B(secC_8H_{17})_3$	HB	1	$-149\cdot3$ \pm $3\cdot5$	26.6 ± 0.5	-122.7 ± 4
	* This research.	. C = c	ombustion. HB =	= hydroboration.	

TABLE 3. Heats of formation of alkylborons.

To derive the values $\Delta H_{\rm f}^{\circ}$ (gas), the heats of vaporisation at 25°, $\Delta H_{\rm v}^{\circ}$, given by Furukawa and Park¹¹ for BMe₃ and BEt₃ were used; for the remainder, we have assumed that $\Delta H_{v}^{\circ}(BR_{3}) = \Delta H_{v}^{\circ}(HCR_{3})$, and calculated the latter from an empirical formula given by Greenshields and Rossini¹² (the attached error limits of ± 0.5 kcal./mole are arbitrary). The $\Delta H_t^{\circ}(\text{liq.})$ quoted for the hexyl, heptyl, and octyl compounds differ slightly from those given originally;¹ they have been corrected to allow for Brown's finding ³ that the hydroboration of 1-olefins does not lead exclusively to addition of boron to the terminal = CH_2 , and that ca. 6% of addition occurs at the 2-position.

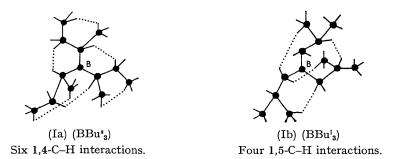
The internal consistency of these $\Delta H_{f}^{\circ}(g)$ values may be tested by comparing the experimental with calculated values obtained by application of the bond-energy and bondinteraction scheme described by Allen¹³ and Skinner.¹⁴ The scheme leads to the equation:

$$\Delta H_{\mathbf{f}}^{\circ}[\mathbf{B}(\mathbf{C}_{n}\mathbf{H}_{2n+1})_{3},\mathbf{g}.], \text{ calc.} = \Delta H_{\mathbf{f}}^{\circ}(\mathbf{B}\mathbf{M}\mathbf{e}_{3},\mathbf{g}.) + 3(n-1)[\Delta H_{\mathbf{f}}^{\circ}(\mathbf{C}_{2}\mathbf{H}_{6},\mathbf{g}.) - \Delta H_{\mathbf{f}}^{\circ}(\mathbf{C}\mathbf{H}_{4},\mathbf{g}.)] \\ - b_{3}\Gamma - c_{4}\Delta - b_{3}'\Gamma_{\mathbf{B}} - c_{4}'\Delta_{\mathbf{B}} + [S].$$
(9)

where b_3 is the number of C-C-C interactions, b_3' the number of B-C-C interactions, c_4 the number of C_3 trios, c_4' the number of BC_2 trios, and [S] the total steric repulsion correction in the molecule. The interaction parameters Γ and Δ have been previously defined ¹⁴ and given the values 2.58 and -0.55 kcal./mole, respectively. For the parameters $\Gamma_{\rm B}$ and $\Delta_{\rm B}$, we suggest (provisionally) the values 0.7 and -1.1 kcal./mole, respectively, and have accepted (provisionally) a value -27.6 kcal./mole for $\Delta H_{\rm f}^{\circ}({\rm BMe}_{3},{\rm g.})$: hence, eqn. (9) now becomes:

$$\Delta H_{f}^{\circ}[B(C_{n}H_{2n+1})_{3},g.], \text{ calc.} = -20.55 - 7.05n - 2.58b_{3} + 0.55c_{4} - 0.7b_{3}' + 1.1c_{4}' + [S].$$
(10)

Comparison of the $\Delta H_{\rm f}^{\circ}$ calculated from eqn. (10) with the experimental data is made in Table 4 below. The agreement between calculated and observed values is satisfactory, in view of the large uncertainty limits attached to the experimental values. The steric repulsion corrections, [S], in the isobutyl, s-butyl, and s-octyl compounds are considered due to the close approach (within 2 Å) of certain non-bonded hydrogen atoms in these molecules (shown diagrammatically in Ia and b). In BBus₃, there are six steric interactions,* three of the type $S_{11}(12^2)$, and three of type $S_{11}(2^22^3)$, in the symbolism used by Skinner 14 in discussing similar steric interactions in paraffins: if we adopt the paraffin


- ¹⁰ Hasely, Garrett, and Sisler, J. Phys. Chem., 1956, 60, 1136.
- ¹¹ Furukawa and Park, unpublished data referred to in ref. 8.
- Greenshields and Rossini, J. Phys. Chem., 1958, 62, 271.
 Allen, J. Chem. Phys., 1959, 31, 1039.
 Skinner, J., 1962, 4396.

^{*} These can be demonstrated by scale models made with units manufactured by W. Buchi, Glasapparatefabrik, Flawil, Switzerland.

Calculated and observed $\Delta H_{\rm f}^{\circ}$ values.								
	[S]						$\Delta H_{\mathbf{f}}^{\mathbf{o}}(\mathbf{g})$) (kcal./mole)
Molecule	n	b_3	C4	b_{3}'	c4'	(kcal./mole)	calc.	obs.
BMe ₃	1	0	0	0	0	0.0	-27.6	-30.0 ± 5.5
BEt ₃	2	0	0	3	0	0.0	-36.7_{5}	$-38\cdot4\pm3\cdot8$
								-36.6 ± 1.4
BBu ⁿ 3	4	6	0	3	0	0.0	$-66 \cdot 3_{3}$	-68.4 ± 3
BBu ⁱ s	4	9	3	3	0	ca. 3	-69.4	$-68 \cdot 1 \pm 1 \cdot 7$
BBu ^s 3	4	6	0	6	3	ca. 3·8	-61.3	-60.7 ± 6.5
$B(C_6H_{13})_3$	6	12	0	3	0	0.0	$-95 \cdot 8_{1}$	-96.0 ± 2.8
$B(C_7H_{15})_3$	7	15	0	3	0	0.0	-110.6_{0}	-110.6 ± 2.3
$B(C_8H_{17})_3$	8	18	0	3	0	0.0	$-125 \cdot 4$	$-125\cdot7~\pm~2\cdot3$
$B(secC_8H_{17})_3$	8	18	0	6	3	ca. 3·8	-120.4	-122.7 ± 4

TABLE 4. Calculated and observed $\Delta H_{f^{\circ}}$ values

values for these terms, the total steric correction in BBu_3^s (and in BOc_3^s) may be evaluated at *ca.* **3**·8 kcal./mole. The correction for BBu_3^t is less easy to estimate, since the steric interactions are here due to close approach of C-H bonds 1,5 to one another and have not been evaluated in paraffins. There are four "close approaches" (to within *ca.* 2 Å) in

the conformation we have chosen as the least hindered: we have assumed each of these makes a repulsion-energy contribution of ca. $\frac{3}{4}$ kcal./mole.

With the provisional evaluation of the parameters $\Gamma_{\rm B}$ and $\Delta_{\rm B}$ (eqn. 9), the Allen scheme can be applied to calculate approximate $\Delta H_{\rm f}^{\circ}$ values for complex organoboranes such as may be present in the products of hydroboration of butadiene. One of the simpler of these, according to Koster,¹⁵ is 1,1'-tetramethylenebisborolane, C_4H_8B ·[CH₂]₄·BC₄H₈, although it now appears ⁹ that this results as a redistribution product on distillation of the initial product mixture. Application of Allen's scheme to the borolane derivative gives:

$$\Delta H_{a}^{\circ} [\Box B - CCCC - B \Box, g.], \text{ calc.} = 2\Delta H_{a}^{\circ} [BMe_{3}, g.] + 3\Delta H_{a}^{\circ} [C_{2}H_{6}, g.] + 6B_{CC} - 12B_{CH} + 6(\Gamma + \Gamma_{B}) - 2S_{R} \quad (11)$$

where ΔH_a° measures heat of atomisation (at 25°), B_{CO} and B_{CH} are "effective" bond energy terms,¹⁴ and S_R is the ring-strain of the borolane ring. Equation (11) may readily be recast into the more convenient form:

$$\Delta H_{\mathbf{i}}^{\circ} \left[\left[\left[\left[-B - C_{\mathbf{4}} - B \right] \right], g. \right] = 2\Delta H_{\mathbf{f}}^{\circ} \left[BMe_{\mathbf{3}}, g. \right] + 3\Delta H_{\mathbf{f}}^{\circ} \left[C_{\mathbf{2}}H_{\mathbf{6}}, g. \right] + 6[\Delta H_{\mathbf{f}}^{\circ} \left(C_{\mathbf{2}}H_{\mathbf{6}} \right) - \Delta H_{\mathbf{f}}^{\circ} \left(CH_{\mathbf{4}} \right) - 6\Delta H_{\mathbf{f}}^{\circ} \left(CH_{\mathbf{4}} \right) - 6(\Gamma + \Gamma_{\mathbf{B}}) + 2S_{\mathbf{B}} \quad (12)$$

which, if we assume $S_{\rm R} \sim 6$ kcal./mole, leads to $\Delta H_f^{\circ}[\Begin{array}{c} Begin{array}{c} Begin{arra$

¹⁵ Koster, Angew. Chem., 1959, 71, 520; 1960, 72, 626.

atoms in the molecular formula: whence we obtain $\Delta H_{f}^{\circ}[[B-C_{4}-B]]$, liq.] ~ -44.4 kcal./mole, and we can now calculate the heat of the specific hydroboration reaction:

$$3CH_2=CH-CH=CH_2(g.) + B_2H_6(g.) \longrightarrow \Box B-C_4-B (liq.);$$
(13)
$$\Delta H (calc.) = -130.1 \text{ kcal./mole.}$$

Heats of a number of possible hydroboration reactions of butadiene, calculated in the above manner, are listed in Table 5. A further datum, $\Delta H_{\rm f}^{\circ}({\rm Me_2BH,g.}) \sim -12.4$ kcal./mole, was required in constructing Table 5, and was obtained from $\Delta H_{\rm f}^{\circ}({\rm BH_3,g.}) = 18.0$ kcal./mole,¹⁶ by assuming that $\Delta H_{\rm f}^{\circ}({\rm Me_2BH,g.}) = \frac{2}{3}\Delta H_{\rm f}^{\circ}({\rm BMe_3,g.}) + \frac{1}{3}\Delta H_{\rm f}^{\circ}({\rm BH_3,g.})$.

TABLE	5.
-------	----

Calculated heats of hydroboration of butadiene

 $nC_4H_6(g_{\cdot}) + B_2H_6(g_{\cdot}) \longrightarrow Products(liq_{\cdot}).$

	Reaction *	ΔH (calc.) kcal./mole of B ₂ H ₆	Diene BH ₃	H ₂ BH,
2CH ⊥ B.H	· 2CpBH	-74	1.0	1.0
	• CpB-C ₄ -BCp	-130	1.5	0.0
	$\sim 2CpB-CCC=C$	-130	1 5 2·0	0.0
	*		- •	
	· [-C ₄ BH-] ₅	-86	1.0	1.0
$6C_4H_6 + 2\frac{1}{2}B_2H_6 \longrightarrow$	$\cdot \left[(C_4BH)_4 - C_4B \leq_{C_3=C} \right] \dots$	-97	$1 \cdot 2$	0.8
$7C_4H_6 + 2\frac{1}{2}B_2H_6 \longrightarrow$	$- [(C_4BH)_3 - (C_4B < C_3 = C)_2]$	-108	1.4	0.6
$8C_4H_6 + 2\frac{1}{2}B_2H_6 \longrightarrow$	$-\left[\left(C_{4}BH\right)_{2}-\left(C_{4}B < C_{3}=C\right)_{3}\right] \cdots \cdots \cdots \cdots \cdots$	-119	1.6	0.4
$9C_4H_6 + 2\frac{1}{2}B_2H_6 \longrightarrow$	$-\left[\left(C_{4}BH\right)-\left(C_{4}B < C_{3}=C\right)_{4}\right]$	-130	1.8	$0{\cdot}2$
$10C_4H_6 + 2\frac{1}{2}B_2H_6 \longrightarrow$	$- [-C_4B <_{C_3=C}]_5$	-142	$2 \cdot 0$	0.0
$4C_4H_6 + B_2H_6 \longrightarrow$	- 2(C=CCC) ₂ BH	- 86	$2 \cdot 0$	1.0
$6C_4H_6 + B_2H_6 \longrightarrow$	- 2(C=CCC) ₃ B	-143	3.0	0.0
$11C_4H_6 + 2\frac{1}{2}B_2H_6$	$\begin{bmatrix} -C_4 B - (C_4 B < C_3 = C)_4 \end{bmatrix}$	-161	$2 \cdot 2$	0.0
	c l C–Ch			
$15C_4H_6 + 2\frac{1}{2}B_2H_6$	$\begin{bmatrix} -C_4 B -] \\ \downarrow \\ CC - Ch \end{bmatrix}_{\mathfrak{s}}$	-234	3 ·0	0.0
	* $CpB = \Box B$. $Ch = Cyclohex$ -	2-enyl.		

Zweifel, Nagase, and Brown⁹ reported that the main products of room-temperature hydroboration of butadiene (diene/BH₃ ratio = 1 are polymers of $-[CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot BH]$, mainly pentamers and hexamers; special interest, therefore, attaches to the set of reactions in Table 5 leading to $-[CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot BH]_5$ and its derivatives. The calculated heats of these reactions, for diene/BH₃ ratios from 1.0 to 2.0, and H₂/BH₃ ratios from 1.0 to 0.0, are plotted (broken line) in Fig. 1, for direct comparison with the measured heats of reaction. The experimental line lies some 10–15 kcal./mole of B₂H₆ above the theoretical, and is of similar slope. The smallness of the gap between the lines implies that the principal reaction occurring is hydroboration, and that polymerisation of the excess of butadiene does not occur to any appreciable extent: *

¹⁶ JANAF Thermochemical Data, ed. D. R. Stull, Dow Chemical Co., Midland, Mich., 1960 onwards.

^{*} The addition of but adiene to ethylene occurs only to 20% at 200° and 200-400 atm., according to Joshel and Butz. ^7

¹⁷ Joshel and Butz, J. Amer. Chem. Soc., 1941, 63, 3350.

heats of reaction considerably in excess of those observed would be expected in this event (cf. the calculated reaction heats for the formation of the cyclohexene derivatives listed at the foot of Table 5).

The calculated ΔH values for the comparable reactions of isoprene with diborane are similarly plotted (broken line) in Fig. 2. In these, however, the ΔH refer to reaction systems in which the isoprene was present initially in monoglyme solution [in calculating ΔH , the heat of solution of liquid isoprene in monoglyme was assumed, $\Delta H_{\rm soln.} = 0.5$ kcal./mole, so that $\Delta H_{\rm f}^{\circ}$ (isoprene, monoglyme soln.) = 12.3 kcal./mole]. As with butadiene, the theoretical line lies below the experimental, the separation between the two in this case being no more than 5—10 kcal./mole. The thermochemistry of these diene-diborane reactions thus appears to be consistent in the main essentials with the proposed mechanism of Zweifel *et al.*⁹

The research was supported financially by the U.S. Department of Army, through its European Research Office.

CHEMISTRY DEPARTMENT, UNIVERSITY OF MANCHESTER. [Received, January 23rd, 1963.]